
A Case Study for Aspect-Based Updating

Susanne Cech Previtali and Thomas R. Gross

Department of Computer Science, ETH Zurich, Switzerland

Abstract. Rather than upgrading a software system to the next version
by installing a new binary, software systems could be updated “on-the-
fly” during their execution. We are developing a software evolution sys-
tem that leverages aspect technology. As changes typically spread across
several classes, we can handle updates like other crosscutting concerns:
we encapsulate all changes, constituting a logical update, in one aspect.
In this paper, we evaluate our approach. We report on a case study about
the evolution of a Java application. The analysis provides details about
how classes change between versions, and how these changes would be
expressed in terms of updating aspects. Unfortunately, not all kinds of
changes can be expressed using the aspect model. The results of our
study, however, reveal that many changes fit our aspect-based approach.

1 Introduction

Dynamic software evolution represents an interesting technique to update soft-
ware systems at run-time and is particularly helpful for systems that must be
continuously available and up-to-date.

Our approach to the dynamic evolution of object-oriented software systems [1,
2] treats updates in a manner similar to crosscutting concerns in aspect-oriented
programming: all changes that belong to a logical update are encapsulated in
one aspect. We are developing a software evolution system that implements this
idea. To compute the required updates, the system compares statically two com-
plete versions of a Java program and deduces their structural differences. The
structural differences constitute the individual changes. The system identifies the
dependences between the changes and encapsulates these changes in an aspect.
The dynamic aspect system PROSE [4–7] achieves dynamic software evolution
by dynamically integrating the aspects.

In this paper, we report on a case study of an open-source Java program
to determine if the evolution steps can be expressed as a sequence of updating
aspects. The result of this case study reveals that—although not all evolution
steps can be handled this way—most changes are limited to the implementation
of methods and thus do not change the specification of classes. We show that
many evolution steps can be decomposed and thus modularized, as indeed the
actual changes concern “clusters” of few interacting classes.

The remainder of the paper is organized as follows: Sect. 2 explains the
methodology of the case study. Sect. 3 presents the results of the evaluation and
discusses the applicability of the updating model based on the results of the
study. Sect. 4 concludes the paper.



2 Case Study

We have implemented a system to analyze compiled Java programs. All classes
constituting the old and the new version of a program are compared to deduce
the structural differences. First, classes, and recursively fields and methods, are
matched as pairs to compute the sets of enduring, added, and removed entities.
Second, the enduring entities are compared to compute the sets of unchanged
and modified entities and the kinds of modifications. Based on the structural
differences, the tool creates a method call-graph taking into account the static
and dynamic target types and deduces the dependences between the changes. We
refer to earlier work for a detailed description of the system architecture [1] and
the corresponding algorithms [2]. Note that our current implementation matches
two versions based on only the name and thus handles a rename as an removal
and addition.

For the case study, we describe the evolution of a program from different
points of view. First, we present the number of unchanged, modified, added, and
removed classes. Then, we detail specific changes of the modified classes based on
the actual modifications between two versions of an analyzed application. This
data is based on the information available in the class file [3]: A class header
stores the direct super-class and the interfaces a class implements, as well as the
type parameters of generic classes. The header includes the access modifiers that
determine whether a class is e.g., abstract, final, or synthetic. Furthermore, the
header records the Java version. A field is characterized by its type, the access
modifiers, the initial value, and generic parameters. A method is described by
its body, the access modifiers, the return and argument types, exceptions, and
generic parameters. Last, we discuss the updating aspects necessary to evolve
the different versions.

3 Results

We have chosen Apache Tomcat 5.5, which implements version 2.4 of the Servlet
and version 2.0 of the JSP specification, because it provides more than 20 re-
leases. We downloaded the compiled releases of the “deployer” distribution and
included all available Jar-files. tomcat-5.5 initially consists of 399 classes, 1678
fields, and 3706 methods. In its latest release, tomcat-5.5 includes 461 classes,
1902 fields, and 4348 methods.

The first part of Table 1 shows the coarse-grained evolution of tomcat-
5.5. Mostly, classes are not changed between two versions except for release
5.5.1 when 60% of the existing 399 classes were modified. Only in six versions,
classes were added. With three exceptions, classes are never removed. Fields are
mostly stable, on average 99% are not changed. Only in nine versions, fields
are modified; and only in eleven versions, fields are removed. In eleven versions,
fields are added; in particular, in version 5.5.3, 177 fields are added. Similar to
fields, methods are very stable. On average, only 1% of the methods changes,
less than 1% are added or removed.



Table 1. Evolution of tomcat-5.5.

Evolution Modification

Classes Fields Methods Classes Fields Methods

U
n
ch

a
n
g
ed

M
o
d
ifi

ed

A
d
d
ed

R
em

o
ve

d

U
n
ch

a
n
g
ed

M
o
d
ifi

ed

A
d
d
ed

R
em

o
ve

d

U
n
ch

a
n
g
ed

M
o
d
ifi

ed

A
d
d
ed

R
em

o
ve

d

M
et

h
o
d
s

V
er

si
o
n

F
ie

ld
s

S
u
p
er

-c
la

ss

In
te

rf
a
ce

s

A
cc

es
s

T
yp

e

V
a
lu

e

B
o
d
y

R
et

u
rn

ty
p
e

A
rg

u
m

en
t

ty
p
es

A
cc

es
s

E
xc

ep
ti
o
n
s

5.5.0

→5.5.1 164 235 0 0 1676 1 3 1 3601 104 6 1 77 229 5 0 0 1 0 0 104 0 0 0 0

→5.5.2 384 15 0 0 1676 0 0 4 3668 41 1 2 15 0 3 0 0 0 0 0 41 0 0 0 0

→5.5.3 366 31 40 2 1640 0 177 36 3613 56 487 41 31 0 7 0 0 0 0 0 56 1 1 0 0

→5.5.4 422 15 0 0 1816 0 4 1 4114 38 5 4 15 0 2 0 0 0 0 0 38 0 0 0 0

→5.5.5 425 12 1 0 1819 1 1 0 4108 49 5 0 12 0 1 0 0 0 1 0 49 1 0 0 0

→5.5.6 430 8 0 0 1821 0 0 0 4133 29 0 0 8 0 0 0 0 0 0 0 29 0 0 0 0

→5.5.7 423 15 1 0 1820 0 10 1 4122 38 22 2 15 0 1 2 0 0 0 0 38 0 0 0 0

→5.5.8 420 19 0 0 1828 2 2 0 4138 44 2 0 18 0 3 0 0 0 2 0 44 1 0 0 0

→5.5.9 403 36 1 0 1816 13 19 3 4078 94 31 12 36 0 18 0 0 13 0 0 94 1 1 0 0

→5.5.10 413 25 1 2 1841 0 11 7 4136 61 15 6 25 0 5 0 0 0 0 0 60 1 0 0 0

→5.5.11 430 9 0 0 1852 0 0 0 4182 30 0 0 9 0 0 0 0 0 0 0 30 0 0 0 0

→5.5.12 417 17 17 5 1848 0 21 4 4159 41 61 12 17 0 2 0 0 0 0 0 41 0 0 1 0

→5.5.13 435 16 0 0 1868 1 0 0 4218 43 3 0 16 0 1 0 0 0 1 0 43 0 0 0 0

→5.5.14 442 9 0 0 1868 1 0 0 4230 34 0 0 9 0 1 0 0 0 1 0 34 0 0 0 0

→5.5.15 440 11 0 0 1868 1 1 0 4226 38 1 0 11 0 2 0 0 0 0 1 38 0 0 0 0

→5.5.16 440 11 0 0 1870 0 0 0 4232 33 0 0 11 0 0 0 0 0 0 0 33 0 0 0 0

→5.5.17 441 10 0 0 1870 0 0 0 4233 32 0 0 10 0 0 0 0 0 0 0 32 0 0 0 0

→5.5.20 439 12 0 0 1865 0 0 5 4227 38 0 0 12 0 1 0 0 0 0 0 38 0 0 0 0

→5.5.23 423 28 0 0 1857 4 3 4 4197 65 4 3 27 0 6 0 0 4 0 0 65 0 0 0 0

→5.5.25 431 20 0 0 1857 1 0 6 4214 50 0 2 20 0 4 0 0 1 0 0 50 0 1 0 0

→5.5.26 425 24 12 2 1846 0 56 12 4134 95 119 35 24 1 9 0 1 0 0 0 95 0 2 5 1

3.1 Modifications

In the following, we discuss the specific modifications shown in the second part
of Table 1. We first present modified classes, then fields and methods.

Class modifications. The most frequent changes are method modifications. Only
in version 5.5.1, the most frequent change regards the change of the Java ver-
sion, when 60% of the classes were compiled from Java 1.2 to Java 1.4. The Java
version (consisting of a major and minor version number in the class file header)
defines the version of the class file format and consequently the minimal required
Java virtual machine. A change in that version number may either reflect the mi-
gration of the Java development tools or the conscious usage of a new language
feature. As we use the compiled application in bytecode form, we do not distin-
guish between the two cases. The inheritance structure of tomcat-5.5 is very
stable. Only in version 5.5.7, two classes extended different super-classes; and in
version 5.5.26, one class removed an interface (i.e., java/lang/Serializable). Ac-
cess modifiers and generic parameters are never changed (and are consequently
omitted in the table).



Field modifications. In tomcat-5.5, fields are rarely changed. The access mod-
ifiers account for the most frequent change. This change consists of removing
the modifier static (12 private fields and one protected in 5.5.9, two private
fields in 5.5.23, one private field in 5.5.25). There is one change of the initial
value in release 5.5.15. The few type changes refer to changes of a container
type (i.e., java/util/Vector to java/util/List) or different representation (i.e., us-
ing a java/lang/ThreadLocal rather than a java/util/Hashtable keyed by thread-
identifier for storing thread-local data).

Method modifications. The most prominent method change regards the change of
the method body; in 99% only the body is changed. There are only a few changes
of the return or argument types or access modifiers. These changes always imply
an adaptation of the method body.

3.2 Updates

The updating approach cannot handle all kinds of changes. In such a case, the
application cannot be updated at run-time and, as a consequence, must be
restarted with the new version. For example, the updating model cannot up-
date the super-class (one release in tomcat-5.5), as the aspect model does not
provide a means to define such modifications. Furthermore, we cannot support
changes to the Java version, as updated virtual machine is required to support
new language features. As Java versions are released only every two years, this
affects only one release in tomcat-5.5. Type changes require the adaptation of
existing objects (four releases including a total of five changes). As a dynamic as-
pect system does not have the means to access each object, we again may choose
to restart the application. As an alternative, we have described an extension to
the aspect system using a copying garbage collector that could iterate over the
object graph thereby transforming the objects [1].

Table 2 shows the aspects necessary to update the application. Column As-
pects shows the number of aspects that contain the number of methods given
in the first column. Column Advised classes shows the number of aspects that
advise the number of classes given in the header, in relation to the total number
of methods contained in the aspect. Column Virtual methods indicates the num-
ber of aspects that redefine the number of virtual methods given in the header,
in relation to the total number of methods contained in the aspect. Overall,
the table shows that most aspects encompass only a small number of classes
and methods. Additionally, the number of virtual methods updated is small and
explicit dispatching is therefore rarely required.

4 Concluding remarks

We analyzed more than 20 releases of tomcat-5.5 that capture four years of its
evolution. The results of this case study confirm our expectations: tomcat-5.5
exposes fairly localized changes and thus allow the modular decomposition of



Table 2. Necessary updating aspects.

Methods Aspects Advised classes Virtual methods

1 2 3 0 1 2 12

1 976 976 0 0 976 0 0 0

2 36 13 23 0 19 17 0 0

3 10 8 2 0 2 0 8 0

4 4 1 2 1 3 0 1 0

5 5 1 3 1 2 3 0 0

6 1 0 0 1 1 0 0 0

7 1 0 1 0 1 0 0 0

10 2 1 1 0 1 1 0 0

13 1 0 1 0 1 0 0 0

23 1 1 0 0 0 0 0 1

24 1 0 0 1 0 1 0 0

an update. There are various evolution steps the updating model can handle,
and software developers may consider dynamic aspect-based updating as an
alternative approach to achieve dynamic software evolution.

Acknowledgments. The work presented in this paper was partially supported by the National
Competence Center in Research on Mobile Information and Communication Systems (NCCR-MICS),
a center supported by the Swiss National Science Foundation under grant number 5005-67322.

References

1. S. Cech Previtali and T. R. Gross. Dynamic Updating of Software Systems Based
on Aspects. In 22nd IEEE International Conference on Software Maintenance
(ICSM’06), pages 83–92, 2006.

2. S. Cech Previtali and T. R. Gross. Extracting Updating Aspects from Version
Differences. In 4th International Linking Aspect Technology and Evolution Workshop
(LATE’08), 2008. As the proceedings are not yet published, the paper is accessible at
http://www.lst.inf.ethz.ch/research/publications/LATE 2008.html.

3. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 2nd edition, 1999.

4. A. Nicoară and G. Alonso. Dynamic AOP with PROSE. In International Workshop
on Adaptive and Self-Managing Enterprise Applications (ASMEA’05), pages 125–
138, 2005.

5. A. Nicoară, G. Alonso, and T. Roscoe. Controlled, Systematic, and Efficient Code
Replacement for Running Java Programs. In ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008 (EuroSys’08), 2008.

6. A. Popovici, G. Alonso, and T. Gross. Just-in-time Aspects: Efficient Dynamic
Weaving for Java. In 2nd International Conference on Aspect-Oriented Software
Development (AOSD’03), pages 100–109, 2003.

7. A. Popovici, T. R. Gross, and G. Alonso. Dynamic Weaving for Aspect-Oriented
Programming. In 1st International Conference on Aspect-Oriented Software Devel-
opment (AOSD’02), pages 141–147, 2002.


